
Nico Gort Freitas // MCB111 11/11/22

Simulating reaction
systems with the
Gillespie algorithm

Recap on reaction system

How do we make sure no transcription is modeled to occur when the gene is inactivated?

1A = {1 if gene is activated
0 otherwise

Use an indicator function:

× 1A

× 1A

× (1 − 1A)

• Choose a short enough step size to avoid simultaneous reactions

• At each t+∆t:

• Compute reaction probabilities given ∆t

• Sample whether any and which reaction occurs

• Update abundances and rates

Naive simulation of reaction system

For low molecular numbers (and therefore infrequent collisions),

no reaction would occur on most steps

What if we could skip straight to when the next reaction occurs,
instead of simulating endless infinitesimal steps?

Gillespie Stochastic Simulation Algorithm

• Samples exact solutions to the master equation

• Doesn’t have to simulate infinitesimal ∆t

Gillespie SSA workflow

w1 = kb(1 − 1A)
w2 = ku1A
w3 = k11A
w4 = k2RNA

Roulette selectionτ ∼ Exp(∑
i∈R

wi)

Update abundances

w1 = kb(1 − 1A)
w2 = ku1A
w3 = k11A
w4 = k2RNA

Set initial abundances

Compute initial propensities

1A = {1 if gene is activated
0 otherwise

Where 1A is the indicator function:

Exponentially distributed waiting times

τ ∼ Exp(∑
i∈R

wi) ≡ Exp(wR)

P(τ |wR) = wRe−τwR

Fτ = 1 − e−τwR

F−1(τ) =
−1
wR

log(1 − u)

Exponential CDF and associated inverse:

We sample our waiting times from an exponential distribution
with a rate ⟨1/τ⟩ equal to the sum of propensities

Exponential PDF:

How to sample a reaction based on propensities
Roulette selection

→ c1 = 0

→ c2 = 0.01

→ c3 = 0.11

→ c4 = 0.16

Compute  
associated

cumulative sums

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16

u ∼ Unif(0,∑
i∈R

wi)

Sample u from a  
uniform distribution
between 0 and the

sum of all propensities

RNA degradation
31%

RNA synthesis
63%

Gene inactivation
6%

u < c1?
u < c2?

⋮

Go through cumulative
propensities; stop

when u < ci

Compute

Propensities

w1 = 0

w2 = 0.01

w3 = 0.1

w4 = 0.05

import numpy as np

import matplotlib.pyplot as plt

from IPython.display import clear_output

import random

Week 10 Section:

Gillespie Algorithm and master equations

Things to remember:

Master equations can be defined in terms of stepped increments and updates.

The Gillespie SSA algorithm allows us to sample probability distributions described by master equations.

The Gillespie SSA algorithm:

The propensities are nothing else than the transition probabilities from one state to the next. The propensity for a given transition (reaction) is denoted as

Let's write a function implementing the gillespie algorithm for a similar problem described in class we can write each change of state - the copy number of the mRNA and the availability of the gene - and their respective

propensities:

r reaction propensity (R) Description

1 0 Gene activation

2 0 Gene inactivation

3 +1 RNA synthesis

4 -1 RNA degradation

The events that we outlined above are going to be rare, discrete and independent. Each one of them is the occurrence of a Poisson process and we'll go along the lines of the following logic, but before a couple of things to

keep in mind:

States changes in our system at a (which we know is drawn from an exponential distribution with mean) any of our reactions can happen, but the probability that reaction happens is going to be proportional to

. Reactions with higher propensities are more likely to happen.

To choose which reaction is going to happen out of the possible ones we can reduce the problem to sampling a random number in the interval from 0 to 1, where the drawing probability of each state is:

The reason that the Dwell time is sampled from an exponential distribution with mean is this:

Imagine we had just one Poisson distributed set of events, we know that the waiting time between events is exponentially distributed.

𝑟 𝑤𝑟

𝜂

𝐺𝑒𝑛𝑒(𝐼) 𝐺𝑒𝑛𝑒(𝐴)⟶

𝑘𝑏
𝑘𝑏

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐼)⟶

𝑘𝑢
𝑘𝑢

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐴) + 𝑅𝑁𝐴⟶

𝑘1
𝑘1

𝑅𝑁𝐴 ∅⟶

𝑘2
𝑅𝑘2

Δ𝑡 𝑊𝑅 𝑟

𝑤𝑟

𝑖

=
𝑤𝑖

∑
𝑟

𝑤𝑟

𝑤𝑖

𝑊𝑅

𝑊𝑅

Another way of looking at it is the probability that the elapsed time is greater than :

Imagine now that you have multiple poisson events that can happen and similarly, the probability that no event has happened is:

which would be equivalent to the probability of a single poisson process with the probability that it does happen in the is exponentially distributed with mean :

Where is our dwell time.

Now the logic that we are following:

1. start the algorithm in some state:

Gene: Active or Inactive.

mRNAs: Any number of them.

2. Calculate all the propensities, they could be a function of the state of the system -something to watch out for- they need to be computed at every step.

3. Sample a dwell time

4. Sample a transition

5. Increment the time by

6. re-write the states in our system

def reaction(kb, ku, k1, k2, T, dynamic_plotting = False):

 # initialize our states

 ga,r,t = [0],[0],[0]

 propensities_history = []

 while (t[-1] < T):

 # calculate the propensities

 # some of which rely on our current state

 # (whether the gene is active, the number of mRNAs, etc.)

 propensities = np.array([kb * (1-ga[-1]), ku * ga[-1], k1 * ga[-1], k2 * r[-1]])

 propensities_history.append(propensities)

 # sample a dwell time

 tau = (-1/sum(propensities)) * np.log(np.random.random())

 # sample a reaction

 gillespie_r = random.random()

 # Update our states

 if gillespie_r <= np.cumsum(propensities/sum(propensities))[0]: #kb

 ga+= [1] # equivalent to ga.append(1)

𝑡 Δ𝑡

𝑃 (𝑡 > Δ𝑡 ∣) = d𝑡 𝑃 (𝑡 ∣) =𝑤1 ∫
∞

Δ𝑡

𝑤1 e− Δ𝑡𝑤1

𝑃 (> Δ𝑡, > Δ𝑡, …) = 𝑃 (> Δ𝑡)𝑃 (> Δ𝑡)⋯ = = =𝑡1 𝑡2 𝑡1 𝑡2 ∏
𝑟

e− Δ𝑡𝑤𝑟 e−Δ𝑡 ∑
𝑟

𝑤𝑟 e−Δ𝑡𝑊𝑅

𝑤 = ∑
𝑟

𝑤𝑟 Δ𝑡
1

∑
𝑟

𝑤𝑟

𝑃 (𝜏) = 𝑊𝑅𝑒
− 𝜏𝑊𝑅

𝜏

𝜏

http://www.cds.caltech.edu/~murray/books/AM08/pdf/bfs-stochastic_14Sep14.pdf

 r += [r[-1]] # equivalent to r.append(r[-1])

 elif gillespie_r <= np.cumsum(propensities/sum(propensities))[1]:#ku

 ga+= [0]

 r += [r[-1]]

 elif gillespie_r <= np.cumsum(propensities/sum(propensities))[2]: #k1

 r += [r[-1] + 1]

 ga+= [ga[-1]]

 elif gillespie_r <= np.cumsum(propensities/sum(propensities))[3]: #k2

 r += [r[-1] - 1]

 ga+= [ga[-1]]

 # increment the time by tau

 t += [t[-1] + tau]

 if dynamic_plotting == True:

 if len(t) % 100 == 0:

 clear_output(wait=True)

 fig,ax = plt.subplots(ncols= 1,nrows =2)

 fig.set_figwidth(15)

 fig.set_figheight(5)

 ax[1].step(t, r , lw = 1,c = 'r', label = 'rna', where='post')

 ax[0].step(t, ga , lw = 1,c = 'b', label = 'Gene', where='post')

 ax[1].set_xlabel('t')

 ax[0].set_ylabel('Gene activation / silencing')

 ax[1].set_ylabel('RNA molecules')

 #ax[1].step(t+[T], [0]+r , lw = 1,c = 'r', label = 'rna')

 #ax[0].step(t+[T], [0]+ga , lw = 1,c = 'b', label = 'Gene')

 plt.show();

 return t,ga,r, propensities_history

r reaction propensity (R) Description

1 0 Gene activation

2 0 Gene inactivation

3 +1 RNA synthesis

4 -1 RNA degradation

𝜂

𝐺𝑒𝑛𝑒(𝐼) 𝐺𝑒𝑛𝑒(𝐴)⟶

𝑘𝑏
𝑘𝑏

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐼)⟶

𝑘𝑢
𝑘𝑢

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐴) + 𝑅𝑁𝐴⟶

𝑘1
𝑘1

𝑅𝑁𝐴 ∅⟶

𝑘2
𝑅𝑘2

t,ga,r, propensities_history = reaction(kb = 0.002, ku = 0.001, k1 = 0.05, k2 = 0.01,T = 10000, dynamic_plotting=True)

For the homework

r reaction propensity (R) (P) Description

1 0 0 Gene activation

2 0 0 Gene inactivation

3 +1 0 RNA synthesis

4 -1 0 RNA degradation

5 0 +1 Protein synthesis

6 0 -1 Protein degradation

def reaction_rp_model(kb, ku, k1, k2, k3, k4, T, dynamic_plotting = False):

 # initialize our states

 ga, r, p, t = [0],[0],[0],[0]

 propensities = np.array([kb * (1-ga[-1]), ku * ga[-1], k1 * ga[-1], k2 * r[-1], None, None, None]) # replace None

 propensities_history.append(propensities)

 # sample a dwell time

 tau = (-1/sum(propensities)) * np.log(np.random.random())

 # sample a reaction

 gillespie_r = random.random()

 # Update our states

 ###

 ### ???

 ### ???

 ###

 # increment the time by tau

 t += [t[-1] + tau]

𝜂 𝜂

𝐺𝑒𝑛𝑒(𝐼) 𝐺𝑒𝑛𝑒(𝐴)⟶

𝑘𝑏 𝑘𝑏

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐼)⟶

𝑘𝑢 𝑘𝑢

𝐺𝑒𝑛𝑒(𝐴) 𝐺𝑒𝑛𝑒(𝐴) + 𝑅𝑁𝐴⟶

𝑘1 𝑘1

𝑅𝑁𝐴 ∅⟶

𝑘2 𝑅𝑘2

𝑅𝑁𝐴 𝑅𝑁𝐴 + 𝑃𝑟𝑜𝑡𝑒𝑖𝑛⟶

𝑘3 𝑅𝑘3

𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ∅⟶

𝑘4 𝑃𝑘4

 if dynamic_plotting == True:

 if len(t) % 100 == 0:

 clear_output(wait=True)

 fig,ax = plt.subplots(ncols= 1,nrows =2)

 fig.set_figwidth(15)

 fig.set_figheight(5)

 ax[0].step(t, ga , lw = 1,c = 'b', where='post')

 ax[1].step(t, r , lw = 1,c = 'r', where='post')

 ax[2].step(t, p , lw = 1,c = 'g', where='post')

 plt.show();

 return t,ga,r,p, propensities_history

