Simulating reaction
systems with the
Gillespie algorithm

Nico Gort Freitas // MCB111 11/11/22

Recap on reaction system

r | reaction propensity N(R) | Description

1 Gene(I) oy Gene(A) kp x(1-1,)]|| 0 Gene activation
2 Gene(A) ey Gene(I) ky x1, 0 Gene inactivation
3 | Gene(A) A, Gene(A) + RNA || k1 x4 +1 RNA synthesis

4 RN A & 0 ko R -1 RNA degradation

{ 1 if gene is activated

0 otherwise

Naive simulation of reaction system

« Choose a short enough step size to avoid simultaneous reactions
e Ateach t+At:

 Compute reaction probabilities given At

« Sample whether any and which reaction occurs

 Update abundances and rates

For low molecular numbers (and therefore infrequent collisions),
no reaction would occur on most steps

What if we could skip straight to when the next reaction occurs,
instead of simulating endless infinitesimal steps?

Gillespie Stochastic Simulation Algorithm

2340 Daniel T. Gilespie
Exact Stochastic Simulation of Coupled Chemical Reactions

Danlel T. Gillespie*

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1877)

Publication costs assisted by the Naval Weapons Center

There are two formalisms for mathematically describing the time behavior of a spatially homogeneous chemical
system: The deterministic approach regards the time evolution as a continuous, wholly predictable process
which is governed by a set of coupled, ordinary differential equations (the “reaction-rate equations”); the stochastic
approach regards the time evolution as a kind of random-walk process which is governed by a single dif-
ferential-difference equation (the “master equation”). Fairly simple kinetic theory arguments show that the
stochastic formulation of chemical kinetics has a firmer physical basis than the deterministic formulation, but
unfortunately the stochastic master equation is often mathematically intractable. There is, however, a way
to make exact numerical calculations within the framework of the stochastic formulation without having to
deal with the master equation directly. It is a relatively simple digital computer algorithm which uses a rigorously
derived Monte Carlo procedure to numerically simulate the time evolution of the given chemical system. Like
the master equation, this “stochastic simulation algorithm™ correctly accounts for the inherent fluctuations

BETTER LIGHTS

I o \
and correlations that are necessarily ignored in the deterministic formulation. In addition, unlike most procedures RN T R AT A T
for numerically solving the deterministic reaction-rate equations, this algorithm never approximates infinitesimal A bt UP
time increments dt by finite time steps At. The feasibility and utility of the simulation algorithm are demonstrated Y ‘ / FOR THE CHA T TAG
by applying it to several well-known model chemical systems, including the Lotka model, the Brusselator, and v i OUND TRIP TICKET,

NCE TO WIN
| AR

the Oregonator. t
e Oregonat #De\taCUP@“‘ESt

 Samples exact solutions to the master equation
 Doesn’t have to simulate infinitesimal At

Gillespie SSA workflow

1 (. . o R . b
[Initialization » Selection of the time step Selection of the process
) ™ Roulette selection
~ Ex W;
Set initial abundances ‘ P Z))
Compute initial propensities _ IER)
Wl - kb(l — lA)
W2 — kl/tlA ky k k k
Wy = k] lA Update abundances Gene(I) — Gene(A) Gene(A) — Gene(I) Gene(A) —» Gene(A) + RNA RNA -0
Wy = k2RNA W
Where 14 is the indicator function: (
Update of the rates
. {1 if gene is activated L
AT .
0 otherwise wy = ky(1—1,)
wy = k1,
W3 — kllA

W4 - szNA

Exponentially distributed waiting times

We sample our waiting times from an exponential distribution
with a rate (1/1) equal to the sum of propensities

©~ Exp(), w) = Exp(wg)

IER

Exponential PDF:

P(t|wp) = wre™ ™"F

Exponential CDF and associated inverse:

F.=1—e ™"

Fl(7) = —! log(1 — u)
WR

Roulette selection

How to sample a reaction based on propensities

Compute Sample u froma Go through cumulative
Compute . T .
Probensities associated uniform distribution propensities; stop
& cumulative sums between 0 and the when u < ¢
sum of all propensities
U~ Unif(O,Zwl-) < c;?
Wl - O — Cl — O R
s U< cy?
Wy = 0.01 2~ Y 0.14
— — ¢, = 0.11 0.12
W3 Ol C3 0.1
wy = 0.05 — ¢, =0.16 0.08
0.06
0.04
0.02

O_

With r; and ry two random numbers from the unit-
interval uniform distribution, take

7= (1/ag) In (1/r) (21a)

and take u to be that integer for which |
w1

“gla,, < rag < __ﬁla,, N (21b)

The generating procedure (21) is easy to code in Fortran.

import numpy as np

import matplotlib.pyplot as plt

from IPython.display import clear_output
import random

Week 10 Section:

Gillespie Algorithm and master equations

Things to remember:

¢ Master equations can be defined in terms of stepped increments and updates.

¢ The Gillespie SSA algorithm allows us to sample probability distributions described by master equations.

The Gillespie SSA algorithm:

The propensities are nothing else than the transition probabilities from one state to the next. The propensity for a given transition (reaction) r is denoted as w,

Let's write a function implementing the gillespie algorithm for a similar problem described in class we can write each change of state - the copy number of the mRNA and the availability of the gene - and their respective
propensities:

r reaction propensity 7(R) Description
1 Gene(I) L, Gene(A)) 0 Gene activation
2 Gene(A) R Gene(I) ki 0 Gene inactivation

3 Gene(A) L» Gene(A) + RN A ki +1 RNA synthesis
4 RNA & 1] kaR -1 RNA degradation

The events that we outlined above are going to be rare, discrete and independent. Each one of them is the occurrence of a Poisson process and we'll go along the lines of the following logic, but before a couple of things to
keep in mind:

States changes in our system at a At (which we know is drawn from an exponential distribution with mean Wpg) any of our reactions can happen, but the probability that reaction r happens is going to be proportional to
w,. Reactions with higher propensities are more likely to happen.
To choose which reaction i is going to happen out of the possible ones we can reduce the problem to sampling a random number in the interval from 0 to 1, where the drawing probability of each state is:
wp W
Zr wr WR

The reason that the Dwell time is sampled from an exponential distribution with mean W7y, is this:

Imagine we had just one Poisson distributed set of events, we know that the waiting time between events is exponentially distributed.

Another way of looking at it is the probability that the elapsed time ¢ is greater than Af:

P(t > At | wy) =/ dr P(t | wy) = e 14
At

Imagine now that you have multiple poisson events that can happen and similarly, the probability that no event has happened is:

P(t; > At,tp > At, ..) = P(ty > ADP(ty > Ar) - = [[e = e Zr 0 = ek
r

which would be equivalent to the probability of a single poisson process with w = Zr w, the probability that it does happen in the At is exponentially distributed with mean

.
>, w
P(t) = Wre Wr®
Where 7 is our dwell time.
Now the logic that we are following:
1. start the algorithm in some state:

o Gene: Active or Inactive.

o mRNAs: Any number of them.
2. Calculate all the propensities, they could be a function of the state of the system -something to watch out for- they need to be computed at every step.
3. Sample a dwell time
4. Sample a transition
5. Increment the time by 7
6. re-write the states in our system
def reaction(kb, ku, k1, k2, T, dynamic_plotting = False):

initialize our states
ga,r,t = [0],[0],[0]

propensities_history = []
while (t[-1] < T):

calculate the propensities
some of which rely on our current state
(whether the gene is active, the number of mRNAs, etc.)

propensities = np.array([kb * (1-ga[-11), ku % ga[-1], k1 % ga[-1], k2 % r[-11])
propensities_history.append(propensities)

sample a dwell time

tau = (-1/sum(propensities)) * np.log(np.random.random())

sample a reaction

gillespie_r = random.random()

Update our states

if gillespie_r < np.cumsum(propensities/sum(propensities))[0]: #kb
ga+= [1] # equivalent to ga.append(1)

http://www.cds.caltech.edu/~murray/books/AM08/pdf/bfs-stochastic_14Sep14.pdf

r += [r[-1]] # equivalent to r.append(r[-1])
elif gillespie_r < np.cumsum(propensities/sum(propensities))[1]:#ku
ga+= [0]

r += [r[-1]]
elif gillespie_r < np.cumsum(propensities/sum(propensities))[2]: #k1
r += [r[-1] + 1]

ga+= [ga[-1]]
elif gillespie_r < np.cumsum(propensities/sum(propensities))[3]: #k2
r += [r[-1] - 1]

ga+= [ga[-1]]

increment the time by tau
t += [t[-1] + taul

if dynamic_plotting = True:
if len(t) % 100 = 0:
clear_output(wait=True)
fig,ax = plt.subplots(ncols= 1,nrows =2)
fig.set_figwidth(15)
fig.set_figheight(5)

ax[1].step(t, r , lw = 1,c = 'r', label = 'rna', where='post')
ax[0].step(t, ga , lw = 1,c = 'b', label = 'Gene', where='post')

ax[1].set_xlabel('t")
ax[0].set_ylabel('Gene activation / silencing')
ax[1].set_ylabel('RNA molecules')

#ax[1].step(t+[T], [0]+r , 1w = 1,c = 'r', label = 'rna')
#ax[0].step(t+[T], [0]+ga , 1w = 1,c = 'b', label = 'Gene')
plt.show();

return t,ga,r, propensities_history

reaction propensity #(R) Description

Gene(I) N Gene(A) ky 0 Gene activation
Gene(A) L Gene(I) ky 0 Gene inactivation

Gene(A) 25 Gene(A) + RNA ki 1 RNAsynthesis

RNA - ¢ kaR -1 RNA degradation

t,ga,r, propensities_history = reaction(kb = 0.002, ku = 0.001, k1 = 0.05, k2 = 0.01,T = 10000, dynamic_plotting=True)

Gene activation / silencing

0 2000 1000 5000 8000 10000

RNA molecules

_h

0 2000 2000 £000 a000 10d00

For the homework

r reaction propensity #(R) #(P) Description

T Gene(I) 2% Gene(A) ky 0 0 Gene activation

2 Gene(A) LN Gene(I) ky 0 0 Gene inactivation

3 Gene(A) -5 Gene(A) + RNA ki #1 0 RNAsynthesis

4 RNA L 1] k>R -1 0 RNA degradation

5 RNA -, RNA + Protein k3R 0 +1 Protein synthesis

6 Protein ﬁ, 1] k4P 0 -1 Protein degradation

def reaction_rp_model(kb, ku, k1, k2, k3, k&, T, dynamic_plotting = False):
initialize our states
ga, r, p, t = [0],[0],[0],[0]
propensities = np.array([kb % (1-ga[-1]), ku = ga[-1], k1 = ga[-1], k2 % r[-1], None, None, Nonel) # replace None

propensities_history.append(propensities)
sample a dwell time
tau = (-1/sum(propensities)) * np.log(np.random.random())

sample a reaction
gillespie_r = random.random()
Update our states

THAE

HH 777

HHE 27?77

i

increment the time by tau

t += [t[-1] + taul

if dynamic_plotting = True:
if len(t) % 100 = 0:
clear_output(wait=True)
fig,ax = plt.subplots(ncols= 1,nrows =2)
fig.set_figwidth(15)
fig.set_figheight(5)

ax[0].step(t, ga , lw = 1,c = 'b', where="post"')
ax[1].step(t, r , lw = 1,c = 'r', where='post')
ax[2].step(t, p, lw = 1,c = 'g', where='post')
plt.show();

return t,ga,r,p, propensities_history

