
Homework question:
Implement a neural network to distinguish* low-quality characters

MCB111 Section week 8

Nicolas Gort Freitas

10/28/2022

• Classification using a one-neuron network (i.e. a perceptron)

• Reconstruction using a Hopfield network

Implementation options

Hopfield networks are recurrent networks  
that don’t use backpropagation to learn

Source: asimovinstitute.org

Recurrent networks include
cycles in their topology

Some, like LSTMs, do apply backpropagation

Hopfield networks, on the other hand uses something

http://asimovinstitute.org

Hopfield networks are fully connected graphs
with symmetrical weights

wm,n = wn,m

wn,n = 0

W ∈ ℝN×N

The weights are usually packed together in a matrix

With N rows and N columns, where N is the number of neurons

Self-edges have weight 0 by definition.

Weights are symmetrical for any pair of neurons m, n:

Hopfield networks are modeled after associative memory

This principle, called Hebbian learning, postulates that it is  
most efficient for neurons to strengthen synapses among

neurons that tend to fire in the same situations.

Hopfield networks interpret training observations in terms
of their pairwise relationships

0 y1 = y2?

⋮

y2 = y1?

y25 = y1?

⋱

0

y1 = y25?…

Training

Pattern Flattened image

y ∈ {−1,1}N W ∈ ℝN×N

Weights computed by  
pairwise comparisons

wm,n = ym ⋅ yn

Weight matrix associated with

training pattern

Training on multiple patterns

 W trained on “A”

 W trained on “B”

 W trained on “C”

Training on multiple patterns

 W trained on “A”

 W trained on “B”

 W trained on “C”

 W trained on “A” and “B”

 W trained on “A”, “B”, and “C”

wm,n =
K

∑
i

y(i)
m ⋅ y(i)

n

Simply add up the results from each observation!

Here m and n are features of each flattened observation,

K is the number of observations

So far we’ve covered how Hopfield networks  
can be trained…

W

But how will they aid us in our task to recognize
corrupted representations?

Image reconstruction is performed through
iterative updates based on train weights

ỹn ← {+1 if ∑m wm,nyn ≥ 0
−1 otherwise

1. Update each element / pixel based on
trained weights

2. Repeat until convergence

3. Check whether it matches one of the

trained patterns?

y → ỹ(1) → … → ỹ(∞)

• Why does a Hopfield network reflect the principle of “fire
together, wire together”?

• Many neuroscientists believe memories are in synapses rather
than neurons. How would a Hopfield network relate to this model
of memory?

• When updating our y’s, will we always converge to one of the
elements in the training set?

• Can you unlearn a memory in a Hopfield network? How would
you envision this happening?

Final reflection questions

