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A recap
For the same data D, how to decide between two competing hypotheses H1 and H2?

Naturally, one wants to know which hypothesis is more probable, relatively speaking.
So,

Ratio of posteriors = P(H1|D)
P(H2|D) (1)
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We can re-write it using the Bayes theorem:

Ratio of posteriors = P(D|H1)P(H1)
P(D|H2)P(H2) = Bayes factor × Ratio of priors (2)

If no prior information is incorporated, Bayes factor is what we need
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How to compute P(D|H) given a hypothesis that contains a range of possible
parameter values?

Use Marginalization:

P(D|H) =
∫

λ1
P(D|λ1, H)p(λ1|H) dλ1 (3)

For more than one parameters:

P(D|H) =
∫

λ1
· · ·

∫
λn

P(D|λ1, · · · , λn, H)p(λ1, · · · , λn|H) dλ1 · · · dλn (4)

p(λ1|H),p(λ1, · · · , λn|H) contain what the hypothesis says about the parameters.
Make sure they are normalized:∫

λ1
· · ·

∫
λn

p(λ1, · · · , λn|H) dλ1 · · · dλn = 1 (5)

(Some blackboard examples..)
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Concrete example

The bacteria mutation time problem:

Given a set of mutation times D = {t1, t2, · · · , tN}, what’s the probability of D given
the following hypothesis?

H1 : They follow an exponential distribution with parameter λ (6)

What does the hypothesis say about λ? (aka, how to choose p(λ|H1)?)

“λ ≤ 0” is impossible
“λ > The age of the Earth” is unlikely

Perhaps a uniform distribution over a range: p(λ|H1) =
1

λ+ − λ− =
1
σ

(Some additional caveats: two hypotheses may differ only at p(λ|Hi)!)
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Concrete example

The probability of data given H1 becomes:

P(D|H1) = 1
σ

∫ λ+

λ−
P(D|λ, H1) dλ (7)

Since each data point is independently produced, the full likelihood can be factorized
by the likelihood of each data point:

P(D|H1) = 1
σ

∫ λ+

λ−

N∏
i=1

P(ti |λ, H1) dλ (8)

What does P(ti |λ, H1) look like?
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Concrete example

P(t|λ, H1) should be the density of an exponential distribution,
but truncated at the starting time (t−) and the stopping time (t+) of the experiment:

P(t|λ, H1) = exp(−t/λ)
Z (λ) (9)

Z (λ) is a normalization factor. You can get it by solving:∫ t+

t−

exp(−t/λ)
Z (λ) dt = 1 (10)
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Concrete example

We already have all the ingredients for this likelihood

P(D|H1) = 1
σ

∫ λ+

λ−

N∏
i=1

[exp(−ti/λ)
Z (λ)

]
dλ

= 1
σ

∫ λ+

λ−

[
exp(−

∑N
i=1 ti/λ)

ZN(λ)

]
dλ

(11)

Coding tips: numerical integration, the log-sum-exp trick
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The other hypothesis

Consider a more complex hypothesis:

H2 : the bacteria population is a mixture with two waiting times λ1 and λ2 (12)

Suppose the mixing ratio η : 1 − η is known in H2.
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The other hypothesis

For each data point, its likelihood is simply the mixture between the two truncated
exponential distributions:

P(t|λ1, λ2, H2) = η
exp(−t/λ1)

Z (λ1) + (1 − η)exp(−t/λ2)
Z (λ2) (13)
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The other hypothesis

Then the full likelihood is

P(D|λ1, λ2, H2) =
N∏

i=1

[
η

exp(−ti/λ1)
Z (λ1) + (1 − η)exp(−ti/λ2)

Z (λ2)

]
(13)
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The other hypothesis

Then the full likelihood is

P(D|λ1, λ2, H2) =
N∏

i=1

[
η

exp(−ti/λ1)
Z (λ1) + (1 − η)exp(−ti/λ2)

Z (λ2)

]
(13)

So the probability of data given H2 is

P(D|H2) = 1
σ1σ2

∫ λ+
1

λ−
1

∫ λ+
2

λ−
2

N∏
i=1

[
η

exp(−ti/λ1)
Z (λ1) + (1 − η)exp(−ti/λ2)

Z (λ2)

]
dλ1 dλ2 (14)
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Bayes factor:

P(D|H1)
P(D|H2) = σ1σ2

σ

∫ λ+

λ−

N∏
i=1

[exp(−ti/λ)
Z (λ)

]
dλ

∫ λ+
1

λ−
1

∫ λ+
2

λ−
2

N∏
i=1

[
η

exp(−ti/λ1)
Z (λ1) + (1 − η)exp(−ti/λ2)

Z (λ2)

]
dλ1 dλ2

(15)
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import numpy as np 
import matplotlib.pyplot as plt 
%pylab inline

Populating the interactive namespace from numpy and matplotlib 

Probabilities can be very small numbers

Calculating the probability of some data given a model, usually requires multiplying many different probably terms

This quantity easily underflows, which means that you are trying to calculate something smaller than the precision

of your computer.

If you had a data set , in which each individual datum had probability of the order of  (which is not such

small quantity), then the probability of all the data is

�� try it yourself! 
 
10��(-323), 10��(-324)

(1e-323, 0.0)

The smallest double-precision floting point number,

which means that at  data points,

Has become so small that you would not be able to distinguish having a data set with  measurements

from having another with  points. In other words when we go and try to calculate said probabiliy we are

going to end up with 0 instead of what we know it to actually be: a really, really small number.

How do we get around this?

Working in log space

Working with the log of the probability can be very useful to avoid underflow problems. Because it expands the

dynamic range of the probability effectively giving you access to those small numbers that you couldn't calculate

before. Also, because the logarithm of the probability is monotonically increasing, maximizing the probability and

the logarithm of the probability is the same task.

But working in log-space can be helpful in many ways, let's go back to our example:

If you are having trouble seeing why this is the case remember that it is a property of logarithms that 

. Convince yourself that this extends to N elements, 

 when you are sold, it is trivial to see that 

.

If we go back to the previous example:

but

𝑃 (𝐷 ∣ 𝑀) = 𝑃 ( ∣ 𝑀).∏
𝑖=1

𝑁

𝑑𝑖

𝐷 0.001

𝑃 (𝐷) = =( )10−3 𝑁

10−3×𝑁

≈𝑘𝑚𝑖𝑛 10−323

𝑁 = 100

𝑃 (𝐷; 𝑁 = 100) = 10−300

𝑁 = 100

𝑁 = 200

log 𝑃 (𝐷 ∣ 𝑀) = log 𝑃 ( ∣ 𝑀) = log 𝑃 ( ∣ 𝑀).∏
𝑖=1

𝑁

𝑑𝑖 ∑
𝑖=1

𝑁

𝑑𝑖

log( ) = log( ) + log( )𝑎1𝑎2 𝑎1 𝑎2

log( . . . ) = log( ) + log( )+. . . + log( )𝑎1𝑎2 𝑎𝑁 𝑎1 𝑎2 𝑎𝑁

log( . . . ) = log( )𝑎1𝑎2 𝑎𝑁 ∑
𝑁

𝑖=1
𝑎𝑖

log 𝑃 (𝐷; 𝑁 = 100) = −300 ∗ log(10) = −690.776



thus, the two cases are easily distinguishable in log space.

or

np.log(np.exp(1000)+np.exp(999))

/var/folders/y7/ndhfk28s5_74nw_nw4pt66_w0000gq/T/ipykernel_59072/913420253.py:1� Runti
  np.log(np.exp(1000)+np.exp(999)) 

inf

Sometimes you describe your system with a mixture of probability distributions. For instance like mixture of

Gaussian distributions, or like in the case of our homework this week a mixture of exponential distributions.

Now we work in log space so you have, so you end up having to do the following calculation 

If  and  are large and negative (as it is the case when they represent log probabilities), then that calculation

cannot be directly. For instance, a naive calculation of  will give you -infinity. And if we tried

with positive number, for instance  will give you +infinity.

The way to do this calculation robustly is as follows, assume , then

since , the exponential  never becomes a large number, and the calculation is robust.

Then you will calculate

and

The log-sum-exp trick can be generalized for an arbitrary number of terms

where  is the maximum value of the set .

from calendar import c 
from cmath import log 
from scipy.special import logsumexp 
 
#a, b, c 
 
#e^a, e^b, e^c 
 
#e^a + e^b + e^c 
 
#log(e^a + e^b + e^c) 
 
?logsumexp

log 𝑃 (𝐷; 𝑁 = 200) = −600 ∗ log(10) = −1382.551

log 𝑃 (𝐷; 𝑁 = 200) − log 𝑃 (𝐷; 𝑁 = 100) = −691.775

𝑃 (𝐷; 𝑁 = 200) = 𝑃 (𝐷; 𝑁 = 100)𝑒−691.775

log( + )𝑒𝑎 𝑒𝑏

𝑎 𝑏

𝑙𝑜𝑔( + )𝑒−1000 𝑒−999

log( + )𝑒1000 𝑒999

𝑎 > 𝑏

log( + )𝑒𝑎 𝑒𝑏

log( + )𝑒𝑎 𝑒𝑏

log( + )𝑒𝑎 𝑒𝑏

log( + )𝑒𝑎 𝑒𝑏

= log( ( + ))
𝑒𝑎

𝑒𝑎
𝑒𝑎 𝑒𝑏

= log( (1 + ))𝑒𝑎 𝑒𝑏−𝑎

= log( ) + log(1 + )𝑒𝑎 𝑒𝑏−𝑎

= 𝑎 + log(1 + )𝑒𝑏−𝑎

𝑏 − 𝑎 < 0 ≤ 1𝑒𝑏−𝑎

log( + ) = −999 + log(1 + ) = −999 + 0.31 = −998.69,𝑒−1000 𝑒−999 𝑒−1

log( + ) = 1000 + log(1 + ) = 1000 + 0.31 = 1000.31,𝑒1000 𝑒999 𝑒−1

𝑛

log( + … + ) = + log(1 + ),𝑒𝑎1 𝑒𝑎𝑛 𝑎𝑚𝑎𝑥 ∑
𝑖=1

𝑛

𝑒( − )𝑎𝑖 𝑎𝑚𝑎𝑥

𝑎𝑚𝑎𝑥 { , … , }𝑎1 𝑎𝑛

http://mcb111.org/w03/w03-homework.html


Signature: logsumexp(a, axis=None, b=None, keepdims=False, return_sign=False) 
Docstring: 
Compute the log of the sum of exponentials of input elements. 
 
Parameters 
���������� 
a : array_like 
    Input array. 
axis : None or int or tuple of ints, optional 
    Axis or axes over which the sum is taken. By default `axis` is None, 
    and all elements are summed. 
 
    �� versionadded�� 0.11.0 
keepdims : bool, optional 
    If this is set to True, the axes which are reduced are left in the 
    result as dimensions with size one. With this option, the result 
    will broadcast correctly against the original array. 
 
    �� versionadded�� 0.15.0 
b : array�like, optional 
    Scaling factor for exp(`a`) must be of the same shape as `a` or 
    broadcastable to `a`. These values may be negative in order to 
    implement subtraction. 
 
    �� versionadded�� 0.12.0 
return_sign : bool, optional 
    If this is set to True, the result will be a pair containing sign 
    information; if False, results that are negative will be returned 
    as NaN. Default is False (no sign information). 
 
    �� versionadded�� 0.16.0 
 
Returns 
������� 
res : ndarray 
    The result, ``np.log(np.sum(np.exp(a)))`` calculated in a numerically 
    more stable way. If `b` is given then ``np.log(np.sum(b�np.exp(a)))`` 
    is returned. 
sgn : ndarray 
    If return_sign is True, this will be an array of floating�point 
    numbers matching res and +1, 0, or -1 depending on the sign 
    of the result. If False, only one result is returned. 
 
See Also 
�������� 
numpy.logaddexp, numpy.logaddexp2 
 
Notes 
����� 
NumPy has a logaddexp function which is very similar to `logsumexp`, but 
only handles two arguments. `logaddexp.reduce` is similar to this 
function, but may be less stable. 
 
Examples 
�������� 
��� from scipy.special import logsumexp 
��� a = np.arange(10) 
��� np.log(np.sum(np.exp(a))) 
9.4586297444267107 
��� logsumexp(a) 
9.4586297444267107 
 
With weights 
 
��� a = np.arange(10) 
��� b = np.arange(10, 0, -1) 
��� logsumexp(a, b=b) 
9.9170178533034665 
��� np.log(np.sum(b�np.exp(a))) 



9.9170178533034647 
 
Returning a sign flag 
 
��� logsumexp([1,2],b=[1,-1],return_sign=True) 
(1.5413248546129181, -1.0) 
 
Notice that `logsumexp` does not directly support masked arrays. To use it 
on a masked array, convert the mask into zero weights: 
 
��� a = np.ma.array([np.log(2), 2, np.log(3)], 
���                  mask=[False, True, False]) 
��� b = (~a.mask).astype(int) 
��� logsumexp(a.data, b=b), np.log(5) 
1.6094379124341005, 1.6094379124341005 
File:      ~/opt/anaconda3/lib/python3.9/site�packages/scipy/special/_logsumexp.py 
Type:      function 

import numpy as np 
np.logaddexp?

How to integrate?

We want to find the Area under the curves!

import numpy as np 
import matplotlib.pyplot as plt

xs = np.linspace(0,1,int(1e7)) # def�ne bins 
dx = xs[1]-xs[0] # width of a bin

xs #see what our bin list looks like

array([0.0000000e+00, 1.0000001e-07, 2.0000002e-07, ���, 9.9999980e-01, 
       9.9999990e-01, 1.0000000e+00])

def g(x): # a function to integrate 
    return x

plt.step(xs,g(xs))

[<matplotlib.lines.Line2D at 0�7f8dd928d5d0>]

%%time 
bin_vals = [] 
for x in xs: # For every value in our list of bins get the area of the particular bin 
    bin_vals.append(x*dx) 



 
print(np.sum(bin_vals)) # sum up all the areas.

0.5000000500000026 
CPU times: user 1.87 s, sys: 162 ms, total: 2.03 s 
Wall time: 2.04 s 

%%time 
np.sum(g(xs)*dx) # numpy broadcasting Vector, we do the operation to ever entry on the

CPU times: user 6.72 ms, sys: 2.22 ms, total: 8.94 ms 
Wall time: 6.97 ms 

0.5000000500000026

def g(x): #Another function to integrate. 
    return x��2

plt.step(xs,g(xs))

[<matplotlib.lines.Line2D at 0�7fd788cb1310>]

%%time 
bin_vals = [] 
for x in xs:  # For every value in our list of bins get the area of the particular bin
    bin_vals.append(x��2 * dx) 
 
np.sum(bin_vals) # sum up all the areas.

CPU times: user 3.92 s, sys: 115 ms, total: 4.03 s 
Wall time: 4.04 s 

0.3333333833333404

%%time 
np.sum(xs��2*dx) # numpy broadcasting Vector, we do the operation to ever entry on the

CPU times: user 10.6 ms, sys: 5.4 ms, total: 16 ms 
Wall time: 15.3 ms 

0.3333333833333404

But what about higher dimensional integrals?



We don't want the area under the curve, we want the volume under the surface!

xs = np.linspace(0,1,10) # def�ne bins 
ys = np.linspace(0,1,10) # def�ne bins 
dx = xs[1]- xs[0] # width of a bin 
dy = ys[1]- ys[0] # width of a bin

%%time 
int_value = 0 
bin_vals_x = [] 
for x in xs: # For every value in our list of bins in one axis  
    bin_vals_y = [] 
    for y in ys: # For every value in our list of bins in  the other axis 
        bin_vals_y.append((x��2-y��2)*dx*dy) #updating lists  
        int_value += (x��2-y��2)*dx*dy # Summing the entry at every step 
    bin_vals_x.append(bin_vals_y)  
bin_vals_x = np.array(bin_vals_x) #create surface array 
print(int_value) #value of the integral

-1.5178830414797062e-17 
CPU times: user 244 µs, sys: 76 µs, total: 320 µs 
Wall time: 315 µs 

plt.imshow(bin_vals_x.T, origin='lower', extent=[0,1,0,1]) 
plt.show() 
 

xs[:,np.newaxis].shape

(10, 1)

%%time 
surf = xs[:,np.newaxis]��2 - ys��2 # Numpy broadcasting method of integrating with two

CPU times: user 43 µs, sys: 6 µs, total: 49 µs 
Wall time: 50.1 µs 

Try is yourself:

What does the silcing [�, np.newaxis]  do to the numpy array being sliced?

How does the operation propagate?

plt.imshow(surf.T, origin='lower', extent=[0,1,0,1]) 
plt.show()

∫ ∫ ( − )𝑑𝑥𝑑𝑦𝑥2 𝑦2



Don't know where to start with the homework! Or getting confused with the log
computations?

Try starting here

def Z(lam, tmin, tmax): 
  return lam * (np.exp(-tmin/lam) - np.exp(-tmax/lam)) 
 
�� TODO FOR YOU, FOR HOMEWORK 
�� YOU'LL REALLY WANT TO USE LOGS TO COMPUTE THINGS 
def logZ(lam, tmin, tmax): 
    return -1 
 
# check if similar: 
np.isclose(Z(3, 0.05, 80), np.exp(logZ(3, 0.05, 80)))
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